Normal Ideals of Pseudo-Complemented Distributive Lattices
The notion of normlets and normal ideals are introduced in a pseudocomplemented distributive lattice and then normal ideals are characterized in terms of normlets. Some equivalent conditions are derived for a pseudo-complemented lattice to become a disjunctive lattice. The properties of direct products of normal ideals are studied. A set of equivalent conditions is derived for every prime normal ideal to become a minimal prime ideal in topological terms.
Attachment | Size |
---|---|
![]() | 139.12 KB |
Links
[1] http://www.math.sc.chula.ac.th/cjm/vol9
[2] https://math.sc.chula.ac.th/cjm/tags/m-sambasiva-rao
[3] https://math.sc.chula.ac.th/cjm/tags/abd-el-mohsen-badawy
[4] https://math.sc.chula.ac.th/cjm/tags/pseudo-complemented-distributive-lattice
[5] https://math.sc.chula.ac.th/cjm/tags/normal-ideal
[6] https://math.sc.chula.ac.th/cjm/tags/normlet
[7] https://math.sc.chula.ac.th/cjm/tags/direct-product
[8] https://math.sc.chula.ac.th/cjm/tags/minimal-prime-ideal
[9] https://math.sc.chula.ac.th/cjm/tags/hausdorff-space
[10] https://math.sc.chula.ac.th/cjm/tags/06b10
[11] https://math.sc.chula.ac.th/cjm/tags/06d15
[12] https://math.sc.chula.ac.th/cjm/tags/06d99
[13] https://d2ijd3g5wqapxj.cloudfront.net/cjm/sites/www.math.sc.chula.ac.th.cjm/files/CJM-Vol%209-2017_05.pdf