# Certain Maximal Commutative Subrings of Full Matrix Rings

**CJM Vol. 2 No. 1 (June 2010), pp. 47 – 56.**

Abstract:

Denote by $M_n(R)$ the full matrix ring over a commutative ring $R$ with identity where $n > 1.$ In this paper, we show that the set $D_n(R)$ of all matrices in $M_n(R)$ of the form

\begin{bmatrix}

x_1 & 0 & \cdots & 0 & y_1 \\

0 & x_2 & \cdots & y_2 & 0 \\

\cdots & \cdots& \cdots & \cdots & \cdots \\

0 & y_2 & \cdots & x_2 & 0 \\

y_1 & 0 & \cdots & 0 & x_1 \\

\end{bmatrix}

is a maximal commutative subring of the ring $M_n(R).$

2000 Mathematics Subject Classification:

Full Paper (PDF):

Attachment | Size |
---|---|

04-CJM2010-033-GP-2011-Feb-08.pdf | 155.83 KB |