Research interest: Biological networks, Systems Biology, Computational Biology, Machine Learning, Graph and Network Analysis, Mathematical Modeling
List of Selected PUBLICATIONS (Last Three Years)
Full Articles (International Journals)
1. Abdullahi MS, Suratanee A, Piro RM, and Plaimas K., (2024), Persistent Homology Identifies Pathways Associated with Hepatocellular Carcinoma from Peripheral Blood Samples, Mathematics 2024, 12(5), 725.
2. Sonsungsan P, Suratanee A, Buaboocha T, Chadchawan S, Plaimas K. (2024), Identification of Salt-Sensitive and Salt-Tolerant Genes through Weighted Gene Co-Expression Networks across Multiple Datasets: A Centralization and Differential Correlation Analysis. Genes (Basel). 2024;15(3):316.
3. Paklao, T., Suratanee, A., Plaimas, K. (2023), ICON-GEMs: integration of co-expression network in genome-scale metabolic models, shedding light through systems biology, BMC bioinformatics 24 (1), 492
4. Janyasupab, P., Suratanee, A., Plaimas, K. (2023), GeneCompete: an integrative tool of a novel union algorithm with various ranking techniques for multiple gene expression data, November 2023, PeerJ Computer Science 9(1):e1686, DOI: 10.7717/peerj-cs.1686
5. Suratanee, A. and Plaimas, K. (2023), Gene Association Classification for Autism Spectrum Disorder: Leveraging Gene Embedding and Differential Gene Expression Profiles to Identify Disease-Related Genes, Applied Sciences (Switzerland), 2023, 13(15), 8980
6. Intarapanya, T., Suratanee, A., Pattaradilokrat, S., Plaimas, K. (2023), Modeling the Spread of COVID-19 with the Control of Mixed Vaccine Types during the Pandemic in Thailand, Trop. Med. Infect. Dis. 2023, 8(3), 175, https://doi.org/10.3390/tropicalmed8030175.
7. Tangmanussukum, P., Kawichai, T., Suratanee, A., Plaimas, K. (2022), Heterogeneous network propagation with forward similarity integration to enhance drug–target association prediction, October 2022, PeerJ Computer Science 8(5):e1124, DOI:10.7717/peerj-cs.1124
8. Intarapanya, T., Suratanee, A., Pattaradilokrat, S., Plaimas, K. (2022), Modeling the spread of COVID-19 as a consequence of undocumented immigration toward the reduction of daily hospitalization: Case reports from Thailand, August 2022, PLoS ONE, 17(8):e0273558, DOI: 10.1371/journal.pone.0273558
9. Sagulkoo, P., Chuntakaruk, H., Rungrotmongkol, T., Suratanee, A., and Plaimas, K. (2022), Multi-Level Biological Network Analysis and Drug Repurposing Based on Leukocyte Transcriptomics in Severe COVID-19: In Silico Systems Biology to Precision Medicine, J. Pers. Med. 2022, 12(7), 1030; https://doi.org/10.3390/jpm12071030.
10. Sonsungsan P., Chantanakool P., Suratanee A., Buaboocha T., Comai L., Chadchawan S. and Plaimas K. (2021), Identification of Key Genes in ‘Luang Pratahn’, Thai Salt-Tolerant Rice, Based on Time-Course Data and Weighted Co-expression Networks. Front. Plant Sci., (December 2021): doi.org/10.3389/fpls.2021.744654. Web of Science (ISI), SCOPUS
11. Suratanee A. and Plaimas K. (2021), Hybrid Deep Learning Based on a Heterogeneous Network Profile for Functional Annotations of Plasmodium falciparum Genes. Int. J. Mol. Sci. 22(18) (September 2021): 10019. Web of Science (ISI), SCOPUS
12. Suratanee, A., Buaboocha, T., Plaimas, K. (2021), Prediction of Human–Plasmodium vivax Protein Associations from Heterogeneous Network Structures based on Machine Learning Approach, Bioinformatics and Biology Insights, 2021.
13. Janyasupab, P., Suratanee, A., Plaimas, K. (2021), Network diffusion with centrality measures to identify disease-related genes, Mathematical Biosciences and Engineering, 2021, 18(3), pp. 2909–2929.
14. Kawichai, T., Suratanee, A., Plaimas, K. (2021), Meta-Path Based Gene Ontology Profiles for Predicting Drug-Disease Associations, IEEE Access, 2021, 9, pp. 41809–41820, 9374464.
BOOK CHAPTERS
1. Plaimas, K. and König, R. (2016) Identifying Antimalarial Drug Targets by Cellular Network Analysis. Current Topics in Malaria edited by Alfonso J. Rodriguez-Morales, ISBN 978-953-51-2790-1, doi: 10.5772/65432, Chapter 13, pages 267-283. November 2016.
2. Plaimas, K. and König, R. (2011) Machine Learning Methods for Identifying Essential Genes and Proteins in Networks, in Applied Statistics for Network Biology: Methods in Systems Biology (eds M. Dehmer, F. Emmert-Streib, A. Graber and A. Salvador), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527638079.ch10, pages 201-214.
WORK EXPERIENCES AND AWARDS
09/2007 – 11/2011 Working on the PhD research at Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
09/2008 – 08/2011 Teaching Assistant in the lecture of Computer methods in Biotechnology, the lecture of Bioinformatics, and the seminar of Genome Analysis and Network (2011), Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology (IPMB), Bioquant, University of Heidelberg, Germany
11/2011 – 01/2012 Researcher at Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
2012 – 2017 Lecturer at Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University
2017 – 2022 Assistant Professor at Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University
2021 Outstanding Mid-career Researcher Award from Faculty of Science, Chulalongkorn University
2022 – present Associate Professor at Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn university
Short CV: my CV
Personal Website: http://pioneer.chula.ac.th/~pkitipor
ที่อยู่ : ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์
จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพ 10330
โทรศัพท์ : 02-218-5141-2
โทรสาร : 02-255-2287