Chamchuri Journal of Mathematics
Published on Chamchuri Journal of Mathematics (http://math.sc.chula.ac.th/cjm)

Home > Invertible Matrices over Idempotent Semirings

Invertible Matrices over Idempotent Semirings

CJM Vol. 1 No. 2 (December 2009) [1], pp. 55 – 61.

Author(s): 
W. Mora [2]
A. Wasanawichit [3]
Y. Kemprasit [4]

Abstract: 

By an idempotent semiring we mean a commutative semiring $(S,+, \cdot)$ with zero $0$ and identity $1$ such that $x+x = x = x^2$ for all $x \in S$ . In 1963, D.E. Rutherford showed that a square matrix $A$ over an idempotent semiring $S$ of 2 elements is invertible over $S$ if and only if $A$ is a permutation matrix. By making use of C. Reutenauer and H. Straubing’s theorems, we extend this result to an idempotent semiring as follows: A square matrix $A$ over an idempotent semiring $S$ is invertible over $S$ if and only if the product of any two elements in the same column [row] is 0 and the sum of all elements in each row[column] is $1$.

Keywords: 
Idempotent semiring [5]
invertible matrix [6]

2000 Mathematics Subject Classification: 
16Y60 [7]
15A09 [8]

Full Paper (PDF): 
AttachmentSize
PDF icon 05-2-CJM2009-025-GP.pdf [9]206.62 KB

Source URL: http://math.sc.chula.ac.th/cjm/content/invertible-matrices-over-idempotent-semirings

Links
[1] http://www.math.sc.chula.ac.th/cjm/vol1no2
[2] http://math.sc.chula.ac.th/cjm/tags/w-mora
[3] http://math.sc.chula.ac.th/cjm/tags/wasanawichit
[4] http://math.sc.chula.ac.th/cjm/tags/y-kemprasit
[5] http://math.sc.chula.ac.th/cjm/tags/idempotent-semiring
[6] http://math.sc.chula.ac.th/cjm/tags/invertible-matrix
[7] http://math.sc.chula.ac.th/cjm/tags/16y60
[8] http://math.sc.chula.ac.th/cjm/tags/15a09
[9] https://d2ijd3g5wqapxj.cloudfront.net/cjm/sites/www.math.sc.chula.ac.th.cjm/files/05-2-CJM2009-025-GP.pdf