A Class of Complex-valued Harmonic Functions Defined by Dziok-Srivastava Operator
The Dziok-Srivastava [6] operator introduced in the study of analytic functions and associated with generalized hypergeometric functions has been extended to harmonic mappings [2, 12]. Using this operator we introduce a subclass of the class $\mathcal{H}$ of complex-valued harmonic univalent functions $f = h +\bar{g}$ where $h$ is the analytic part and $g$ is the co-analytic part of $f$ in $|z| < 1$. Coefficient bounds, extreme points, inclusion results and closure under an integral operator for this class are obtained.
Attachment | Size |
---|---|
![]() | 256.96 KB |
Links
[1] http://www.math.sc.chula.ac.th/cjm/vol1no2
[2] http://math.sc.chula.ac.th/cjm/tags/r-chandrashekar
[3] http://math.sc.chula.ac.th/cjm/tags/g-murugusundaramoorthy
[4] http://math.sc.chula.ac.th/cjm/tags/sk-lee
[5] http://math.sc.chula.ac.th/cjm/tags/kg-subramanian
[6] http://math.sc.chula.ac.th/cjm/tags/harmonic-functions
[7] http://math.sc.chula.ac.th/cjm/tags/hypergeometric-functions
[8] http://math.sc.chula.ac.th/cjm/tags/dziok-srivastava-operator
[9] http://math.sc.chula.ac.th/cjm/tags/extreme-points
[10] http://math.sc.chula.ac.th/cjm/tags/integral-operator
[11] http://math.sc.chula.ac.th/cjm/tags/30c45
[12] http://math.sc.chula.ac.th/cjm/tags/30c50
[13] https://d2ijd3g5wqapxj.cloudfront.net/cjm/sites/www.math.sc.chula.ac.th.cjm/files/03-2-CJM2009-022-GP.pdf