Anti-codes on solid burst of length $b$ of anti-weight $t$
This paper considers a new kind of error which will be termed as `solid burst of length $b$ of anti-weight $t$'. Lower and upper bounds on the number of parity checks required for the existence of anti-codes that detect solid burst of length $b$ or less of anti-weight $t$ or more are obtained. This is followed by an example of such anti-codes. The paper also deals with anti-codes capable of detecting and simultaneously correcting such errors. Then the maximum anti-weight of such errors in the space of $n$-tuples is discussed. Further, the paper obtains an upper bound on the number of parity checks required for the existence of anti-codes that detect solid burst of length $b$ or less of anti-weight $t$ or more, together with $e$ or less random errors of anti-weight $t$ or more ($e < b$).
Attachment | Size |
---|---|
![]() | 135.47 KB |
Links
[1] http://www.math.sc.chula.ac.th/cjm/vol7
[2] http://math.sc.chula.ac.th/cjm/tags/pankaj-kumar-das
[3] http://math.sc.chula.ac.th/cjm/tags/parity-check-matrix
[4] http://math.sc.chula.ac.th/cjm/tags/syndrome
[5] http://math.sc.chula.ac.th/cjm/tags/standard-array
[6] http://math.sc.chula.ac.th/cjm/tags/coset
[7] http://math.sc.chula.ac.th/cjm/tags/solid-burst-error
[8] http://math.sc.chula.ac.th/cjm/tags/94b05
[9] http://math.sc.chula.ac.th/cjm/tags/94b20
[10] http://math.sc.chula.ac.th/cjm/tags/94b65
[11] https://d2ijd3g5wqapxj.cloudfront.net/cjm/sites/www.math.sc.chula.ac.th.cjm/files/CJM2014-011-Yot.pdf